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Set Comprehensions

In mathematics, the comprehension notation can be used to
construct new sets from old sets.

x2 | xO{1..5}}

— S
The set {1,4,9,16,25} of all numbers x? such that x is

an element of the set {1..5}.
\ /

oy
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Lists Comprehensions

In Haskell, a similar comprehension notation can be used to
construct new lists from old lists.

[XAZ | X [1..5]]

N —

The list [1,4,9,16,25] of all numbers x2 such that x

s an element of the list [1..5].
\ /

oy
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Note:

I The expression x — [1..5] is called a generator, as it states
how to generate values for X.

I Comprehensions can have multiple generators, separated
by commas. For example:

> [(X,Y) | X [1..3], Y <« [1..2]]

[(111)1 (112)1 (211)1 (212)1 (311)1 (312)]

oy

Universiteit Antwerpen



1 Changing the order of the generators changes the order of
the elements in the final list:

> [(x,y) |y « [1..2], x < [1..3]]

[(111)1 (211)1 (311)1 (112)I (212)1 (312)]

_I Multiple generators are like nested loops, with later
generators as more deeply nested loops whose variables
change value more frequently.

oy
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Dependant Generators

Later generators can depend on the variables that are
introduced by earlier generators.

[(x,y) | X « [1..3], v «

[x..3]]
//\ R

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are
elements of the list [1..3] and x < y.

\

Universiteit Antwerpen



Using a dependant generator we can define the library
function that concatenates a list of lists:

concat :: [[a]l] - [a]
concat xss = [X | XS « XSS, X « Xs]
For example:

> concat [[1,2,3],1[4,5],[0]]

[1/2/3141516]
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Guards

List comprehensions can use guards to restrict the values
produced by earlier generators.

[x | X « [1..10], even Xx]

/_/\ I

The list [2,4,6,8,10] of all numbers x such that

X Is an element of the list [1..10] and x is even.
\ /

oy
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Using a guard we can define a function that maps a positive
integer to its list of factors:

factors :: Int - [Int]
factors n = [X | x « [1l..n]
, n mod x == 0]
For example:

> factors 15

[1,3,5,15]

oy
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A positive integer is prime if its only factors are 1 and itself.
Hence, using factors we can define a function that decides if a
number is prime:

prime :: Int - Bool
prime n = factors n == [1,n]
For example:

> prime 15
False

> prime '/
True

oy
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Using a guard we can now define a function that returns the list
of all primes up to a given limit:

primes :: Int - [Int]
primes n = [X | X « [l..n], prime Xx]
For example:

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]

oy
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Exercises

(1) A pythagorean triad is triple (x,y,z) of positive integers
such that x? + y2 = z2. Using a list comprehension, define a
function

triads :: Int - [(Int,Int,Int)]

that maps a number n to the list of all triads with
components in the range [1..n].

oy
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(2) A positive integer is perfect if it equals the sum of all of its
factors, excluding the number itself. Using a list
comprehension, define a function

perfects :: Int - [Int]

that returns the list of all perfect numbers up to a given
limit. For example:

> perfects 500

[6,28,4960]

oy

Universiteit Antwerpen



Session 3

List Comprehensions

Universiteit Antwerpen



Introduction

As we have seen, many functions can naturally be defined in
terms of other functions.

factorial :: Int - Int
factorial n = product [1l..n]

/_/\ T

factorial maps any integer n to the product of the

Integers between 1 and n.
\ //

oy
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Recursive Functions

In Haskell, functions can also be defined in terms of themselves.
Such functions are called recursive.

factorial 0 = 1

factorial n = n * factorial (n-1)

factorial maps 0 to 1, and any other integer to the |
product of itself with the factorial of its predecessor.

oy
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For example:

factorial 3

3 * factorial 2

3 * (2 * factorial 1)

3 * (2 * (1 * factorial 0))

3 * (2 * (1L * 1))

3 * (2 * 1)

3 * 2

oy
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Why is Recursion Useful?

> Some functions, such as factorial, are simpler to define in terms
of other functions:

= In practice, however, most functions can naturally be defined in
terms of themselves:

= Properties of functions defined using recursion can be proved
using the simple but powerful mathematical technique of
induction.

oy
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Recursion on Lists

Recursion Is not restricted to numbers, but can also be used to
define functions on lists.

product :: [Int] - Int
product [] S
product (x:xs) = X * product xs

product maps the empty list to 1, and any non-empty list
to its head multiplied by the product of its tall.

oy
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For example:

product [1,2, 3]

product (1:(2:(3:[])))

1 * product (2:(3:[1]))

1 * (2 * product (3:1[]))

1 * (2 * (3 * product []))

1 * (2 * (3 * 1))
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Quicksort

The quicksort algorithm for sorting a list of integers can be
specified by the following two rules:

I The empty list is already sorted;

I Non-empty lists can be sorted by sorting the tail values < the head, sorting
the tail values > the head, and then appending the resulting lists on either
side of the head value.

oy
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Using recursion, this specification can be translated directly into
an implementation:

gsort :: [Int] - [Int]
gsort [] = []
gsort (x:xs) = gsort [a | a « xs, a =< Xx]

++ [x] ++

gsort [b | b « xs, b > x]

This is probably the simplest implementation
of quicksort in any programming language!

oy

Universiteit Antwerpen



For example (abbreviating gsort as q):

q [3,2,4,1,5]
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Exercises

(1) Define a recursive function

insert :: Int - [Int] - [Int]

that inserts an integer into the correct position in a sorted
list of integers. For example:

> insert 3 [1,2,4,5]

[112131415]

oy
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(2) Define a recursive function

isort :: [Int] - [Int]

that implements insertion sort, which can be specified by
the following two rules:

] The empty list is already sorted;

I Non-empty lists can be sorted by sorting the tail and inserting

oy

the head into the result.
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(3) Define a recursive function

merge :: [Int] - [Int] - [Int]
that merges two sorted lists of integers to give a single
sorted list. For example:

> merge [2,5,6] [1,3,4]

[1/2/314/516]

oy
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(4) Define a recursive function

msort :: [Int] - [Int]

that implements merge sort, which can be specified by
the following two rules:

"I Lists of length < 1 are already sorted;

[ Other lists can be sorted by sorting the two halves and merging

oy

the resulting lists.
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(5) Test both sorting functions using Hugs to see how they
compare. For example:

> :set +s
> i1sort (reverse [1l..500])

> msort (reverse [1..500])

The command :set +s tells Hugs to give some useful

oy

statistics after each evaluation.
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