Session 3

Recursion

Universiteit Antwerpen

Set Comprehensions

In mathematics, the comprehension notation can be used to
construct new sets from old sets.

x2 | xO{1..5}}

— S
The set {1,4,9,16,25} of all numbers x? such that x is

an element of the set {1..5}.
\ /

oy

Universiteit Antwerpen

Lists Comprehensions

In Haskell, a similar comprehension notation can be used to
construct new lists from old lists.

[XAZ | X [1..5]]

N —

The list [1,4,9,16,25] of all numbers x2 such that x

s an element of the list [1..5].
\ /

oy

Universiteit Antwerpen

Note:

I The expression x — [1..5] is called a generator, as it states
how to generate values for X.

I Comprehensions can have multiple generators, separated
by commas. For example:

> [(X,Y) | X [1..3], Y <« [1..2]]

[(111)1 (112)1 (211)1 (212)1 (311)1 (312)]

oy

Universiteit Antwerpen

1 Changing the order of the generators changes the order of
the elements in the final list:

> [(x,y) |y « [1..2], x < [1..3]]

[(111)1 (211)1 (311)1 (112)I (212)1 (312)]

_I Multiple generators are like nested loops, with later
generators as more deeply nested loops whose variables
change value more frequently.

oy

Universiteit Antwerpen

Dependant Generators

Later generators can depend on the variables that are
introduced by earlier generators.

[(x,y) | X « [1..3], v «

[x..3]]
//\ R

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are
elements of the list [1..3] and x < y.

\

Universiteit Antwerpen

Using a dependant generator we can define the library
function that concatenates a list of lists:

concat :: [[a]l] - [a]
concat xss = [X | XS « XSS, X « Xs]
For example:

> concat [[1,2,3],1[4,5],[0]]

[1/2/3141516]

Universiteit Antwerpen

Guards

List comprehensions can use guards to restrict the values
produced by earlier generators.

[x | X « [1..10], even Xx]

/_/\ I

The list [2,4,6,8,10] of all numbers x such that

X Is an element of the list [1..10] and x is even.
\ /

oy

Universiteit Antwerpen

Using a guard we can define a function that maps a positive
integer to its list of factors:

factors :: Int - [Int]
factors n = [X | x « [1l..n]
, n mod x == 0]
For example:

> factors 15

[1,3,5,15]

oy

Universiteit Antwerpen

A positive integer is prime if its only factors are 1 and itself.
Hence, using factors we can define a function that decides if a
number is prime:

prime :: Int - Bool
prime n = factors n == [1,n]
For example:

> prime 15
False

> prime '/
True

oy

Universiteit Antwerpen

Using a guard we can now define a function that returns the list
of all primes up to a given limit:

primes :: Int - [Int]
primes n = [X | X « [l..n], prime Xx]
For example:

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]

oy

Universiteit Antwerpen

Exercises

(1) A pythagorean triad is triple (x,y,z) of positive integers
such that x? + y2 = z2. Using a list comprehension, define a
function

triads :: Int - [(Int,Int,Int)]

that maps a number n to the list of all triads with
components in the range [1..n].

oy

Universiteit Antwerpen

(2) A positive integer is perfect if it equals the sum of all of its
factors, excluding the number itself. Using a list
comprehension, define a function

perfects :: Int - [Int]

that returns the list of all perfect numbers up to a given
limit. For example:

> perfects 500

[6,28,4960]

oy

Universiteit Antwerpen

Session 3

List Comprehensions

Universiteit Antwerpen

Introduction

As we have seen, many functions can naturally be defined in
terms of other functions.

factorial :: Int - Int
factorial n = product [1l..n]

/_/\ T

factorial maps any integer n to the product of the

Integers between 1 and n.
\ //

oy

Universiteit Antwerpen

Recursive Functions

In Haskell, functions can also be defined in terms of themselves.
Such functions are called recursive.

factorial 0 = 1

factorial n = n * factorial (n-1)

factorial maps 0 to 1, and any other integer to the |
product of itself with the factorial of its predecessor.

oy

Universiteit Antwerpen

For example:

factorial 3

3 * factorial 2

3 * (2 * factorial 1)

3 * (2 * (1 * factorial 0))

3 * (2 * (1L * 1))

3 * (2 * 1)

3 * 2

oy

Universiteit Antwerpen

Why is Recursion Useful?

> Some functions, such as factorial, are simpler to define in terms
of other functions:

= In practice, however, most functions can naturally be defined in
terms of themselves:

= Properties of functions defined using recursion can be proved
using the simple but powerful mathematical technique of
induction.

oy

Universiteit Antwerpen

Recursion on Lists

Recursion Is not restricted to numbers, but can also be used to
define functions on lists.

product :: [Int] - Int
product [] S
product (x:xs) = X * product xs

product maps the empty list to 1, and any non-empty list
to its head multiplied by the product of its tall.

oy

Universiteit Antwerpen

For example:

product [1,2, 3]

product (1:(2:(3:[])))

1 * product (2:(3:[1]))

1 * (2 * product (3:1[]))

1 * (2 * (3 * product []))

1 * (2 * (3 * 1))

Universiteit Antwerpen

Quicksort

The quicksort algorithm for sorting a list of integers can be
specified by the following two rules:

I The empty list is already sorted;

I Non-empty lists can be sorted by sorting the tail values < the head, sorting
the tail values > the head, and then appending the resulting lists on either
side of the head value.

oy

Universiteit Antwerpen

Using recursion, this specification can be translated directly into
an implementation:

gsort :: [Int] - [Int]
gsort [] = []
gsort (x:xs) = gsort [a | a « xs, a =< Xx]

++ [x] ++

gsort [b | b « xs, b > x]

This is probably the simplest implementation
of quicksort in any programming language!

oy

Universiteit Antwerpen

For example (abbreviating gsort as q):

q [3,2,4,1,5]

Universiteit Antwerpen

Exercises

(1) Define a recursive function

insert :: Int - [Int] - [Int]

that inserts an integer into the correct position in a sorted
list of integers. For example:

> insert 3 [1,2,4,5]

[112131415]

oy

Universiteit Antwerpen

(2) Define a recursive function

isort :: [Int] - [Int]

that implements insertion sort, which can be specified by
the following two rules:

] The empty list is already sorted;

I Non-empty lists can be sorted by sorting the tail and inserting

oy

the head into the result.

Universiteit Antwerpen

(3) Define a recursive function

merge :: [Int] - [Int] - [Int]
that merges two sorted lists of integers to give a single
sorted list. For example:

> merge [2,5,6] [1,3,4]

[1/2/314/516]

oy

Universiteit Antwerpen

(4) Define a recursive function

msort :: [Int] - [Int]

that implements merge sort, which can be specified by
the following two rules:

"I Lists of length < 1 are already sorted;

[Other lists can be sorted by sorting the two halves and merging

oy

the resulting lists.

Universiteit Antwerpen

(5) Test both sorting functions using Hugs to see how they
compare. For example:

> :set +s
> i1sort (reverse [1l..500])

> msort (reverse [1..500])

The command :set +s tells Hugs to give some useful

oy

statistics after each evaluation.

Universiteit Antwerpen

